高中三角函数公式大全(样例5).docx 立即下载
2025-08-28
约1.8万字
约27页
0
22KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

高中三角函数公式大全(样例5).docx

高中三角函数公式大全(样例5).docx

预览

免费试读已结束,剩余 22 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中三角函数公式大全(样例5)

第一篇:高中三角函数公式大全高中三角函数公式大全2009年07月12日星期日19:27三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=tanAtanB1-tanAtanBtanAtanB1tanAtanBcotAcotB-1cotBcotAcotAcotB1cotBcotAcot(A+B)=cot(A-B)=倍角公式tan2A=2tanA1tanA2Sin2A=2SinA•CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·tan(半角公式sin(A2A2A2A2A23+a)·tan(3-a))=1cosA21cosA21cosA1cosA1cosA1cosA1cosAsinAcos()=tan()=cot(tan()=)=sinA1cosA=和差化积sina+sinb=2sinab2cosab2sina-sinb=2cosab2sinab2cosa+cosb=2coscosa-cosb=-2sintana+tanb=ab2ab2cossinab2ab2sin(ab)cosacosb12121212积化和差sinasinb=-cosacosb=sinacosb=cosasinb=[cos(a+b)-cos(a-b)][cos(a+b)+cos(a-b)][sin(a+b)+sin(a-b)][sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosasin(cos(sin(cos(2-a)=cosa-a)=sina+a)=cosa+a)=-sina222sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=万能公式2tana2a2a2a2sinacosasina=1(tan1(tan)))22cosa=1(tan22tana2a2tana=1(tan)2其它公式a•sina+b•cosa=(a2b2)×sin(a+c)[其中tanc=a•sin(a)-b•cos(a)=1+sin(a)=(sin1-sin(a)=(sin1sina1cosaa2a2ba]ab(ab)×cos(a-c)[其中22tan(c)=]+cos)22a-cos)22a其他非重点三角函数csc(a)=sec(a)=双曲函数sinh(a)=e-e2ee2sinh(a)cosh(a)a-aa-acosh(a)=tgh(a)=公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:2±α及232±α与α的三角函数值之间的关系:sin(cos(tan(cot(sin(cos(tan(cot(sin(cos(tan(cot(sin(+α)=cosα+α)=-sinα+α)=-cotα+α)=-tanα-α)=cosα-α)=sinα-α)=cotα-α)=tanα+α)=-cosα+α)=sinα+α)=-cotα+α)=-tanα-α)=-cosα22222223232323232cos(tan(cot(323232-α)=-sinα-α)=cotα-α)=tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+B•s
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

高中三角函数公式大全(样例5)

文档大小:22KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用