专题73 四边形中的新定义问题(解析版)-2025《初中数学》74大招专题突破.docx 立即下载
2025-10-08
约2.1万字
约51页
0
1.6MB
举报 版权申诉
预览加载中,请您耐心等待几秒...

专题73 四边形中的新定义问题(解析版)-2025《初中数学》74大招专题突破.docx

专题73四边形中的新定义问题(解析版)-2025《初中数学》74大招专题突破.docx

预览

免费试读已结束,剩余 46 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

例题精讲


【例1】.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD中,AB=BC,AD=2,CD=5,∠ABC=60°,则线段BD=3.

解:∵对余四边形ABCD中,∠ABC=60°,
∴∠ADC=30°,
∵AB=BC,
∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图所示,
∴△BCD≌△BAF,∠FBD=60°
∴BF=BD,AF=CD,∠BDC=∠BFA,
∴△BFD是等边三角形,
∴BF=BD=DF,
∵∠ADC=30°,
∴∠ADB+∠BDC=30°,
∴∠BFA+∠ADB=30°,
∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,
∴60°+30°+∠AFD+∠ADF=180°,
∴∠AFD+∠ADF=90°,
∴∠FAD=90°,
∴AD2+AF2=DF2,
∴AD2+CD2=BD2,
∴BD2=(2)2+52=45,
∵BD>0,
∴BD=3,
故答案为:3.

变式训练
【变1-1】.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为12.

解:如图1,取AC的中点G,连接BG、DG,,
∵四边形ACEF是菱形,
∴AE⊥CF,
∴∠ADC=90°,
又∵∠ABC=90°,
∴A、B、C、D四点共圆,点G是圆心,
∴∠ACD=∠ABD=90°﹣∠DBC=90°﹣60°=30°,
∵∠AGB=15°×2=30°,∠AGD=30°×2=60°,
∴∠BGD=30°+60°=90°,
∴△BGD是等腰直角三角形,
∴BG=DG=,
∴AC=2,
∴AD=2,
∴,
∴菱形ACEF的面积为:
3
=
=
故答案为:12.
【变1-2】.定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.

【概念理解】(1)如图1,四边形ABCD是“对补四边形”.
①若∠A:∠B:∠C=3:2:1,则∠D=90度.
②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=5.
【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.

(1)解:①∵∠A:∠B:∠C=3:2:1,
∴设∠A=3x°,则∠B=2x°,∠C=x°,
∵四边形ABCD是“对补四边形”,
∴∠A+∠C=180°,
∴3x+x=180,
∴x=45°.
∴∠B=2x=90°.
∵四边形ABCD是“对补四边形”,
∴∠B+∠D=180°,
∴∠D=90°.
故答案为:90;
②连接AC,如图,

∵∠B=90°,
∴AB2+BC2=AC2.
∵四边形ABCD是“对补四边形”,
∴∠B+∠D=180°.
∴∠D=90°.
∴AD2+CD2=AC2.
∴AB2+BC2=AD2+CD2,
∴CD2﹣CB2=AB2﹣AD2,
∵AB=3,AD=2,
∴CD2﹣CB2=32﹣22=5.
故答案为:5;
(2)证明:在DC上截取DE=DA,连接BE,如图,

∵BD平分∠ADC,
∴∠ADB=∠EDB.
在△ADB和△EDB中,
,
∴△ADB≌△EDB(SAS),
∴∠A=∠DEB,AB=BE,
∵AB=CB,
∴BE=BC,
∴∠BEC=∠C.
∵∠DEB+∠BEC=180°,
∴∠DEB+∠C=180°,
∴∠A+∠C=180°,
∴四边形ABCD是“对补四边形”.
【例2】.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或.

解:∵将Rt△ABC平移得到△A′B′C′,
∴BB′=CC′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,
①如图1,当CC′=BC时,BB′=CC′=BC=1;
②如图1,当AC′=AB=2时,
∵∠ABC=90°,BB′是∠ABC的角平分线,
∴∠B′BA=45°,
延长C′B′交AB于H,
∵A′B′∥AB,∠A′B′C′=90°,
∴∠AHC′=∠A′B′C′=90°,
∴∠BHB′=90°,
设BH=B′H=x,
∴BB′=x,AH=2﹣x,C′H=1+x,
∵AC′2=AH2+C′H2,
∴22=(2﹣x)2+(1+x)2
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

专题73 四边形中的新定义问题(解析版)-2025《初中数学》74大招专题突破

文档大小:1.6MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用