




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
乘法运算定律(一)教学设计二十二小杨丽芳教学目标:1、理解乘法交换律和结合律的意义,能运用运算定律使计算简便。2、经历发现归纳乘法交换律、结合律的全过程。学习猜想—验证的科学思维方式,提高分析、概括的能力。3、在探索运算定律的数学活动中,感受数学思考过程的条理性和数学结论的确定性。教学重点:理解乘法交换律和乘法结合律,会对一些算式进行简便运算。教学难点:1、能灵活运用乘法交换律和乘法结合律解决简单的实际问题,提高计算能力。2、能用自己的语言描述乘法交换律和乘法结合律;会用字母表示乘法交换律和乘法结合律。教学过程:一、复习引入。师:同学们,刚才你们出谜语来考我,现在我也出一道题考考你们,可以吗?课件出示:教师读题:在括号内填上合适的符号。32+56○56+3289+72○72+89学生举手抢答。(逐个出示学生答一个出一个)师问:你为什么算得这样快呢?学生回答:应用加法交换律。师:怪不得呢。(课件出示a+b=b+a)师问:再来看这道题,看谁算得又对又快。课件出示:12+39+28=23+34+27=(学生举手回答)(逐个出示学生答一个出一个)问:你为什么算得这么快?你是怎么想的?(学生:应用加法结合律)师:原来是这样啊,怪不得算得这么快呢。看来我还真没有难住你们,你们真聪明。(课件出示:(a+b)+c=a+(b+c))(设计说明:通过比赛的形式调动学生的积极性,拉近和学生的距离。通过这种复习形式,将学生已经学过的旧知识迁移出来,为学习新知识做好铺垫。)二、探究新知1.大胆猜想(学习乘法交换律)师:同学们,运用加法运算定律可以帮助我们更加快速的计算,那么,我们前面学过的乘法,是不是也有运算定律呢?会不会也有交换律?猜想一下?(学生:应该也有)师:你为什么这么说呢?(预设:学生可能想到根据乘法口诀,也可能想到根据加法交换律想到乘法也有交换律)举例说明。(如:3×2=2×3)多找学生举例并且板书出来2.验证师:大家提出了自己的设想,那么我们的这个设想成立吗?让我们来验证一下。分组计算:(课件出示)教师读题:用计算器计算,在括号内填上合适的符号。学生分组计算645×32()32×645203×46()46×203180×53()53×180(每个小组计算一组算式)计算完后,分组汇报结果。你还能写出几组这样的算是吗师:同学们仔细观察这几组算式,看看等号的左右两边有什么相同的地方和不同的地方?(先在小组里说一说吧)学生在小组内观察讨论。师:谁来说一说?(明确:左右两边乘法算式的两个乘数调换了顺序,其结果相同。)(两个同学)师:你们和他发现的一样吗?我还有点不太相信,要不我随便说一个乘法算式,再帮我验证一下。例如:398×96()96×398学生用计算器分组计算证明两个算式相等。师:这下我相信了,原来两个因数相乘,交换因数的位置,积不变。谁能把我们这个伟大发现再说一说?(一个学生)师:你说的真好。这就是乘法交换律(课件出示:乘法交换律内容)谁能把这段话大声朗读一遍?(一个学生)问:我们自己也能总结出定律了,真了不起。如果用a和b表示两个因数,你能用字母表示乘法交换律吗?学生思考回答。教师板书:a×b=b×a齐读一便。3、小组学习讨论乘法结合律。师:同学们,通过大家的猜想验证我们总结出乘法有交换律,很了不起。那么乘法还会不会有结合律?我们先来看这幅图。出示课件:饮料箱,学生看图。师:同学们观察这幅图,看一看这些饮料箱每行有几个,有几行,有几排?学生回答。师:你们能算一算一共有多少饮料箱吗?自主计算。师:你是怎么列算式的?学生回答(教师将学生的算式板书在黑板上)师:这个算式中你先算的什么?学生回答。(预设:如果学生只列出了一种算式,教师加以引导。比如:大家请看从侧面(或正面)看,每行有几个有几行有几排呢?学生说出算式并计算)随着学生的回答,教师整理出两种算法:(6×4)×5=6×(4×5)师:同学们观察这两个算式,看看等号左右两边有什么相同的地方和不同的地方?(注意指导学生把话说完整)师:三个数相乘,先算前两个数和先算后两个数,积却没有发生改变。师:真是太神奇了。我们再找两组算式来试一试。出示试一试中两组式题(1)(36×4)×25(2)(28×5)×636×(4×25)28×(5×6)学生分组计算。(每一组算式分两组做)每人举出一个这样的算式来算一算是不是相等然后教师引导归纳汇报计算结果,师:同学们观察每组算式看看有什么相同的地方和不同的地方,在小组里先交流交流。指名说一说自己发现了什么将学生的话做一下梳理,课件出示:三个数相乘,先乘前两个数或先乘后两个数,积不变。师:这就是乘法结合律。谁能再说说这句话?(课件出示定律内容)(一个学生)问:如果用abc表示三个数,上面的规律用字母怎样表示?学生思考回答。师:板书(a×b)×c=a×(b×c)小结:

as****16
实名认证
内容提供者


最近下载