如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
高一数学必修1知识点:函数的有关概念
以下是关于《高一数学必修1学问点:函数的有关概念》:函数的有关概念1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.留意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1.(5)假如函数是由一些根本函数通过四则运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.(6)指数为零底不行以等于零,(7)实际问题中的函数的定义域还要保证明际问题有意义.一样函数的推断方法:①表达式一样(与表示自变量和函数值的字母无关);②定义域全都(两点必需同时具备)(见课本21页相关例2)2.值域:先考虑其定义域(1)观看法(2)配方法(3)代换法3.函数图象学问归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满意:(1)集合A中的每一个元素,在集合B中都有象,并且象是的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数(1)在定义域的不同局部上有不同的解析表达式的函数。(2)各局部的自变量的取值状况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数假如y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
ca****ng
实名认证
内容提供者
最近下载