您所在位置: 网站首页 / 精品立体几何证明基础题.doc / 文档详情
精品立体几何证明基础题.doc 立即下载
2024-11-13
约1.9万字
约47页
0
708KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

精品立体几何证明基础题.doc

精品立体几何证明基础题.doc

预览

免费试读已结束,剩余 42 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开



第页(共NUMPAGES47页)



立体几何证明基础题

一.解答题(共28小题)
1.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点
(1)求证:PB∥平面EFG;
(2)求证:BC⊥EG.

2.如图,在三棱锥P﹣ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.
(1)求证DE∥PA
(2)求证:DE∥平面PAC;
(3)求证:AB⊥PB.

3.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.

4.如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(Ⅰ)证明:BC⊥平面AMN;
(Ⅱ)求三棱锥N﹣AMC的体积;
(Ⅲ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

5.如图,四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(1)求四棱锥P﹣ABCD的体积;
(2)如果E是PA的中点,求证:PC∥平面BDE;
(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.

6.已知四棱锥A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求证:平面ADE⊥平面ACD;
(Ⅲ)求四棱锥A﹣BCDE的体积.

7.如图,四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥平面ABCD,且∠ABC=.
(1)求证:BC∥平面AB1C1;
(2)求证:平面A1ABB1⊥平面AB1C1.

8.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(Ⅰ)求证:GF∥底面ABC;
(Ⅱ)求证:AC⊥平面EBC;
(Ⅲ)求几何体ADEBC的体积V.

9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,
∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.
(Ⅰ)证明:PA∥平面BMQ;
(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.

10.已知直三棱柱ABC﹣A1B1C1的底面△ABC中,∠C=90°,BC=,BB1=2,O是AB1的中点,D是AC的中点,M是CC1的中点,
(1)证明:OD∥平面BB1C1C;
(2)试证:BM⊥AB1.

11.如图,在四棱锥P﹣ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF∥面PAD.

12.如图,在正方体ABCD﹣A1B1C1D1中,E是AA1的中点,求证:
(Ⅰ)A1C∥平面BDE;
(Ⅱ)平面A1AC⊥平面BDE.

13.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,E为PD的中点.
(1)求证:PB∥平面AEC;
(2)若PA⊥平面ABCD,PA=AD,求证:平面AEC⊥平面PCD.

14.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)BD⊥平面PAC.

15.如图,正四棱柱ABCD﹣A1B1C1D1,底面边长AB=1,侧棱长AA1=2.
(Ⅰ)求正四棱柱ABCD﹣A1B1C1D1的表面积;
(Ⅱ)证明:AC⊥平面BDD1B1.

16.已知正方体ABCD﹣A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1.

17.如图所示,在正方体ABCD﹣A1B1C1D1中,M,E,F,N分别为A1B1,B1C1,C1D1,D1A1的中点,求证:
(1)E,F,D,B四点共面;
(2)面AMN∥平面EFDB.

18.如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P是DD1的中点.
求证:(1)直线BD1∥平面PAC
(2)①求异面直线PC与AA1所成的角.
②平面PAC⊥平面BDD1.

19.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=CB=CC1=2,E是AB中点.
(Ⅰ)求证:AB1⊥平面A1CE;
(Ⅱ)求直线A1C1与平面A1CE所成角的正弦值.

20.如图,在正方体ABCD﹣A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点.求证:平面D1EF∥平面BDG.

21.(文科)如图,正方体ABCD﹣A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

精品立体几何证明基础题

文档大小:708KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用