




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
圆周角的教学设计范文大全 第一篇:圆周角的教学设计圆周角的教学设计一、教材分析《圆周角》是九年级数学教材里面《圆》这一章中的重要一节,它是《圆》这一章中引入圆心角之后的另一个重要的角,圆周角及其定理是《圆》这一章的基本概念和定理,学生掌握的熟练程度直接影响着学生后续知识的学习。因此让学生多角度、多层次地理解并掌握圆周角的定义和定理,有着非常重要的作用。教材对圆周角定理的证明用了完全归纳法,帮助学生理解圆周角定理证明为什么分三类来证明是学好圆周角定理的关键。二、学情分析在此之前,学生已经掌握了圆心角的定义,对圆心角及其度数的有所了解,因此在学习圆周角的定义时,学生会对圆内的又一类角很有兴致。三、教学目标与重难点分析(一)教学目标1.圆周角的概念2.理解圆周角定理,并能运用圆周角定理进行计算或证明(二)教学的重点、难点重点:圆周角的概念、圆周角与圆心角的区别及圆周角定理的应用难点:圆周角定理的分类证明四、教法与学法教法:采用主体参与式教学、教具及多媒体辅助相结合的方法。学法:以学生动手实践操作、观察、合作交流为主要形式的学习方法。五、教学过程(一)课前准备1.教师准备好教具,上面有一个标有圆心的圆,另外有四根两头带环的30cm的黑色橡皮筋软绳,多媒体辅助课件。2.学生自制一个和教师一样的教具板,一根两头带环的长30cm的软绳。(二)教学流程(三)教学过程1.创设情景指导活动师:教师让学生拿出自制的圆形硬纸板(标出圆心)和橡皮筋软绳。上课开始时,伴着山峰起伏连绵的多媒体画面,是配乐诗朗诵:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中。”然后老师让学生抓住这首诗中的“横、侧、远、近、高、低”这几个字,引导他们得出“运动导致变化”这一结论。这时,老师让同学们拿出自己制作的圆形纸板和角,让他们按老师的叙述去活动:先把角的顶点和圆心重合。如图1的角是什么角?在学生回答是圆心角之后,老师说:现在你让这个圆心角的顶点向上运动,如图2的这个角还是不是圆心角?再向上运动,让角的顶点在圆上,如图3的这个角是圆心角吗?让同学们观察比较,问图3的角和圆心角有什么不同,引出“圆周角”,让学生根据特点给圆周角下定义。小练习:老师在圆形纸板上演示出以下几个角(如图4),让学生们判断它们是不是圆周角,并说出为什?2.动手动脑合作交流突破难点让学生拿着自己制作的圆形纸片和角,按要求活动:先将角的顶点放在圆上使它成为圆周角,然后让角的一边绕其顶点旋转。思考:(1)在旋转过程中,圆周角与圆心的位置关系发生了什么变化?(2)圆心与圆周角的位置关系有哪几种?(让学生自己动手实验、思考、讨论得出圆心和圆周角的位置关系有且只有以下三种①圆心在圆周角的外部;②圆心在圆周角的一边上;③圆心在圆周角的内部)(如图5)。接着教师提出问题:(1)根据上面三种情况,你能找到相应的圆心角吗?(2)圆周角∠ABC与和它对同一条弧的圆心角∠AOC的角度大小有什么关系?请同学们独立思考,猜想、讨论,并给出理由。【在学生们思考时,老师根据情况可以对学生给予学法上的引导:(1)解决自己认为简单的情况。(2)引导学生利用以前的知识与结论把新问题变成旧问题而加以解决。】到此教师追问:是不是所有的圆周角与和它对同一条弧的圆心角之间都有这种关系呢?通过这一追问,使学生逐步学会归纳总结,并使他们体会到数学结论的严密性(也对圆周角定理的证明用了完全归纳有所了解),在此基础上得出圆周角定理。3.开发例题引导创新例题如图6,已知:OA、OB、OC都是半径,∠BOC=2∠AOB,求证:∠BAC=2∠ACB。【引导学生利用圆周角定理证明。在学生顺利证得之后,老师引导学生将例题加以变化,用一题多变、一题多问、一题多解(证)的方法从多层次、多角度锻炼学生的思维,使学生能以当节的知识为母本,再创造出新知来。】变化一:如图7,已知:OA、OC是半径,∠AOC=100°。问题(1):求∠BAC+∠ACB为多少度。问题(2):如图8,求∠ABC的度数(不用三角形内角和定理)。让学生讨论这个问题。变化二:问题(3):如图9,(在图8的情况下,在图中添加一个圆周角∠ADC。)求∠ABC+∠ADC的度数。【这个问题较简单,利用定理可以直接解决,但它是下一个变化的铺垫。】变化三:问题(4):如图10(去掉图9中的已知条件∠AOC=100°)。求∠ABC+∠ADC的度数。【这一变化,没有了∠AOC=100°这个条件,因而分别求出∠ABC、∠ADC的度数的解题思路受阻。这使学生的思维必须从∠AOC=100°上发散向整个圆,从而发现:和∠ABC、∠ADC分别对同一条弧的两个圆心角互为周角,因而∠ABC+∠ADC=(1/2)×360°=180°。】问题(5):如图(11),(不连结OA、OC)求∠ABC+∠ADC的度数。【在

小宏****aa
实名认证
内容提供者


最近下载