




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
人教版九年级数学知识点归纳二次函数一、二次函数1、一般地,如果是常数,,那么叫做的二次函数。是自变量。其中,a是二次项系数;b一次项系数;c是常数项。2、二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤。3、二次函数的图象:是常数,,的图像是抛物线。抛物线与它的对称轴的交点叫抛物线的顶点。顶点是抛物线的最高点或最低点。4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。(2)公式:,∴顶点是,对称轴是直线。5、二次函数的图象的特点:(1)抛物线的顶点是坐标原点,对称轴是轴;(2)抛物线的顶点是(h,k),对称轴是x=h;(3)抛物线的顶点是(),对称轴是;①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点。|a|越大,开口越小。|a|越小,开口越大。(4)几种特殊的二次函数的图像特征二、二次函数与二元一次方程的关系人教版九年级数学知识点2相似一、图形的相似1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。3.相似比:相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。二、相似三角形1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(①三边对应成比例②两个三角形的两个角对应相等;③两边对应成比例,且夹角相等;④相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。)3.相似三角形应用视点:眼睛的位置;仰角:视线与水平线的夹角;盲区:看不到的区域。4.相似三角形的周长与面积:①相似三角形周长的比等于相似比。②相似多边形周长的比等于相似比。③相似三角形面积的比等于相似比的平方。④相似多边形面积的比等于相似比的平方。三、位似1.位似图形:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。2.性质:在平面直角体系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形的对应点的坐标的比等于k或-k。注意1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5.位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。位似多边形的对应边平行或共线。位似可以将一个图形放大或缩小。位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。6.根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。人教版九年级数学知识点3锐角三角函数一、锐角三角函数1.正弦:在Rt△ABC中,锐角∠A的对边a与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边=a/c;2.余弦:在Rt△ABC中,锐角∠A的邻边b与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边=b/c;3.正切:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边=a/b。①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边=b/a;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则①sinA=cos(90°?∠A)等等。6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。7、当角度在0°

一条****淑淑
实名认证
内容提供者


最近下载